227 research outputs found

    Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

    Get PDF
    We investigate the possibility of using arrays of closely spaced metal nanoparticles as plasmon waveguides for electromagnetic energy below the diffraction limit of light. Far-field spectroscopy on arrays of closely spaced 50 nm Au particles fabricated using electron beam lithography reveals the presence of near-field optical particle interactions that lead to shifts in the plasmon resonance frequencies for longitudinal and transverse excitations. We link this observation to a point-dipole model for energy transfer in plasmon waveguides and give an estimate of the expected group velocities and energy decay lengths for the fabricated structures. A near-field optical excitation and detection scheme for energy transport is proposed and demonstrated. The fabricated structures show a high propagation loss of about 3 dB / 15 nm which renders a direct experimental observation of energy transfer impossible. The nature of the loss and ways to decrease it by an order of magnitude are discussed. We also present finite-difference time-domain simulations on the energy transfer properties of plasmon waveguides

    Solid Modeling

    Get PDF
    To appear in the Encyclopedia of Electrical and Electronics Engineering, Ed. J. Webster, John Wiley & Sons, 1999.A solid model is a digital representation of the geometry of an existing or envisioned physical object. Solid models are used in many industries, from entertainment to health care. They play a major role in the discrete-part manufacturing industries, where precise models of parts and assemblies are created using solid modeling software or more general computer-aided design (CAD) systems. Solid modeling is an interdisciplinary field that involves a growing number of areas. Its objectives evolved from a deep understanding of the practices and requirements of the targeted application domains. Its formulation and rigor are based on mathematical foundations derived from general and algebraic topology, and from Euclidean, differential, and algebraic geometry. The computational aspects of solid modeling deal with efficient data structures and algorithms, and benefit from recent developments in the field of computational geometry. Efficient processing is essential, because the complexity of industrial models is growing faster than the performance of commercial workstations. Techniques for modeling and analyzing surfaces and for computing their intersections are important in solid modeling. This area of research, sometimes called computer aided geometric design, has strong ties with numerical analysis and differential geometry. Graphic user-interface (GUI) techniques also play a crucial role in solid modeling, since they determine the overall usability of the modeler and impace the user's productivity. There have always been strong symbiotic links and overlaps between the solid modeling community and the computer graphics community. Solid modeling interfaces are based on efficient three-dimensional (3D) graphics techniques, whereas research in 3D graphics focuses on fast or photo-realistic rendering of complex scenes, often composed of solid models, and on realistic or artistic animations of non-rigid objects. A similar symbiotic relation with computer vision is regaining popularity, as many research efforts in vision are model-based and attempt to extract 3D models from images or video sequences of existing parts or scenes. These efforts are particularly important for solid modeling, because the cost of manually designing solid models of existing objects or scenes far excees the other costs (hardware, software, maintenance, and training) associated with solid modeling. Finally, the growing complexity of solid models and the growing need for collaboration, reusability of design, and interoperability of software require expertise in distributed databases, constraint management systems, optimization techniques, object linking standards, and internet protocols. This report provides a brief overview of the solid modeling field, its fundamental technologies, and some important applications

    Evaluation of canine adipose-derived stem cells in a healthy mice subcutaneous model

    Get PDF
    Canine adipose-derived stem cells (cASCs) have great interest for cell-based therapies in Veterinary Medicine. As the behaviour of these cells in non-autologous recipients is not deeply characterized, it is mandatory to study them in new animal models previously to canine specie. In this work, cASCs were injected subcutaneously in mice and these cells were detected by immunohistochemistry using vimentin, CD44 and keratin. The local response evaluated by histology did not reveal signals of significant inflammatory reaction neither in the lymph nodes or other organs. This study showed the implantation of cASCs induced a scarce inflammatory response. Hsd:CD1 (ICR) mouse can be proposed as an animal model to study the in vivo behavior of the cASCs and to validate new cASCs-based approaches avoiding or reducing the use of dogs in research

    Bacterium-inspired Robots for Environmental Monitoring

    Get PDF
    Locating gradient sources and tracking them over time has important applications to environmental monitoring and studies of the ecosystem. We present an approach, inspired by bacterial chemotaxis, for robots to navigate to sources using gradient measurements and a simple actuation strategy (biasing a random walk). Extensive simulations show the efficacy of the approach in varied conditions including multiple sources, dissipative sources, and noisy sensors and actuators. We also show how such an approach could be used for boundary finding. We validate our approach by testing it on a small robot (the robomote) in a phototaxis experiment. A comparison of our approach with gradient descent shows that while gradient descent is faster, our approach is better suited for boundary coverage, and performs better in the presence of multiple and dissipative sources

    Adaptive Sampling for Marine Microorganism Monitoring

    Get PDF
    We describe the design and construction of an underwater sensor actuator network to detect extreme temperature gradients. We are motivated by the fact that regions of sharp temperature change (thermoclines) are a breeding ground for certain marine microorganisms. We present a distributed algorithm using local communication based on binary search to find a thermocline by using a mobile sensor network. Simulations and experiments using a mote test bed demonstrate the validity of this approach. We also discuss the improvement in energy efficiency using a submarine robot as a data mule. Comparisons between experimental data with and without the data mule show that there are considerable energy savings in the sensor network due to the data mule

    Modelo impresso em 3D usado num planeamento cirúrgico de um cão com radius curvus

    Get PDF
    An 8 month-old, 10 kg male Azawakh dog was presented due to worsening forelimb gait and exercise intolerance. The right forelimb presented gross angular limb deformity with carpal valgus and radial procurvatum. Surgical planning based on radiographs allowed calculation of the centers of rotation and angularity (CORAs). The computer tomography data were used to generate 3D reconstructions of the antebrachium to aid the detection of the orthopaedic problems. With proper imaging software, the nature of the deformity and its degree were quantified using a previously unreported method based on the CORAs as a 3D printed model of anatomical area of interest. This 3D printed model was used by the surgeon to simulate the surgery with all orthopaedic steps, which included a partial ulna osteotomy and a double cuneiform osteotomy of the radius performed at the level of CORAs and stabilized with bone plates and screws. After 7 weeks, radiographs revealed bone union. At 8 months after surgery the animal presented a complete recovery of the involved forelimb. CORAs method combined with computed tomography and 3D model was useful to plan and simulate surgical procedures, including the corrective surgery of forelimb deformities in a dog which improved the surgical efficiency comparatively to the conventional pre-operative study.Um cão com 8 meses de idade, 10kg de peso vivo, macho da raça Azawakh foi apresentado à clínica devido à intolerância ao exercício e agravamento da marcha do membro anterior. O membro anterior direito apresentou uma deformidade angular com valgus carpal e com um procarvatum radial. O planeamento cirúrgico inicialmente baseado em exames radiográficos possibilitou o cálculo dos centros de rotação e angulação articulares (CORAs). O exame de tomografia computadorizada foi utilizado juntamente com um software de imagiologia para obter o modelo 3D virtual da área anatómica de interesse que foi posteriormente impresso em 3D e que permitiu quantificar micrometricamente a deformação óssea presente. Este modelo 3D foi utilizado pelos cirurgiões para executar uma simulação cirúrgica completa que englobou todos os procedimentos cirúrgicos, que incluiu a realização de várias osteotomias e aplicação do material cirúrgico (placas e parafusos). Com base na simulação cirúrgica foi executada a cirurgia ao animal. Decorridas sete semanas, as radiografias demonstraram uma correta regeneração óssea. Oito meses após a cirurgia o animal apresentou uma recuperação completa. O método dos CORAs juntamente com a tomografia computadorizada e com a utilização do modelo 3D revelou-se útil no planeamento e na simulação dos vários procedimentos cirúrgicos, resultando numa melhoria significativa da eficiência cirúrgica

    High-pressure operation of a xenon-GPSC/MSGC hybrid detector for hard X-ray spectrometry

    Get PDF
    The performance of a high-pressure xenon gas proportional scintillation counter/microstrip gas chamber (GPSC/MSGC) hybrid detector has been investigated for filling pressures from 1 up to 10 bar, for 22-, 30- and 60-keV photons. GPSC/MSGC hybrid detectors are based on a xenon-GPSC instrumented with a CsI-coated microstrip plate photosensor placed directly within the xenon envelope, as a substitute for the photomultiplier tube. This design avoids the constraints due to the use of a quartz scintillation window for GPSC-photosensor coupling, which absorbs a significant amount of scintillation and is a drawback for applications where large detection areas and high filling pressures are needed. The lowest energy resolutions are achieved for 2 bar (5.5% and 3.4%, FWHM, for 22- and 60-keV photons, respectively). Increasing the pressure to the 5-6 bar range, competitive energy resolutions of 7% and 4.5% are still achieved for 22- and 60-keV photons, respectively. This detector could be a compelling alternative in applications where compactness, large detection area, insensitivity to strong magnetic fields, room temperature operation, large signal-to-noise ratio and good energy resolution are important requirements.http://www.sciencedirect.com/science/article/B6TJM-4M3B6DG-8/1/04ba8b77386c4c69025c7ca19342f79

    Recent advances in X-ray detection with micro-hole and strip plate detector

    Get PDF
    We report on the performance of a micro-hole and strip plate, fabricated with standard gas electron multiplier-production procedures, presenting 40-[mu]m hole-diameter and 30-[mu]m wide anode strips. Multiplication factors of 5×104 were reached in an Ar/Xe (95/5) atmosphere at about 1 bar; the energy resolution is of the order of 14% (FWHM) for 5.9-keV X-rays.http://www.sciencedirect.com/science/article/B6TJM-4BRJY00-1/1/d80a918485bf806c1feae6bbd514d4e

    Optimization of supply diversity for the self-assembly of simple objects in two and three dimensions

    Full text link
    The field of algorithmic self-assembly is concerned with the design and analysis of self-assembly systems from a computational perspective, that is, from the perspective of mathematical problems whose study may give insight into the natural processes through which elementary objects self-assemble into more complex ones. One of the main problems of algorithmic self-assembly is the minimum tile set problem (MTSP), which asks for a collection of types of elementary objects (called tiles) to be found for the self-assembly of an object having a pre-established shape. Such a collection is to be as concise as possible, thus minimizing supply diversity, while satisfying a set of stringent constraints having to do with the termination and other properties of the self-assembly process from its tile types. We present a study of what we think is the first practical approach to MTSP. Our study starts with the introduction of an evolutionary heuristic to tackle MTSP and includes results from extensive experimentation with the heuristic on the self-assembly of simple objects in two and three dimensions. The heuristic we introduce combines classic elements from the field of evolutionary computation with a problem-specific variant of Pareto dominance into a multi-objective approach to MTSP.Comment: Minor typos correcte

    GEM scintillation readout with avalanche photodiodes

    Get PDF
    The use of the scintillation produced in the charge avalanches in GEM holes as signal amplification and readout is investigated for xenon. A VUV-sensitive avalanche photodiode has been used as photosensor. Detector gains of about 4 × 104 are achieved in scintillation readout mode, for GEM voltages of 490 V and for a photosensor gain of 150. Those gains are more than one order of magnitude larger than what is obtained using charge readout. In addition, the energy resolutions achieved with the scintillation readout are lower than those achieved with charge readout. The GEM scintillation yield in xenon was measured as a function of GEM voltage, presenting values that are about a half of those achieved for the charge yield, and reach about 730 photons per primary electron at GEM voltages of 490 V
    corecore